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a multivariate radiologic prediction model (radiologic model) using a population of benign and 
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model. We will then validate these models on the prospective study Detection of Early lung 

Cancer Among Military Personnel Study 1 (DECAMP-1). 
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quantitative analysis were identified from the NLST dataset and included 338 malignant and 319 
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Mayo Clinic for nodule identification and segmentation. Multiple candidate metrics were 

developed and considered for their ability to distinguish benign from malignant nodules, and their 

performance was analyzed by receiver operative characteristic curve analysis (see 

accomplishments section). Multivariate logistic regression, linear/quadratic discriminant analysis 

and support vector machines will now be used to derive the best possible radiologic model, 

following which known predictive clinical variables will be used to derive a clinical/radiologic 

model. These models will be validated in the DECAMP-1 dataset, or alternative datasets (from 

Vanderbilt University and Mayo Clinic) as needed.
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1. INTRODUCTION: 
 

Lung cancer accounts for more cancer-related deaths in the US than colon, prostate and breast 

cancer combined, approximately 160,000 deaths per year. In 2011, a large randomized controlled 

trial, the National Lung Screening Trial (NLST) demonstrated a 20% relative reduction in lung 

cancer morality with annual low-dose chest computed tomography (LD-CT). These encouraging 

results have led to widespread endorsement of lung cancer screening, but at the cost of 

identifying many false-positive LD-CT. In the NLST, 40% of patients had identifiable lung 

nodules, 96% of which proved benign. The ever-expanding use of chest CT in the US (estimated 

20 million/year) is contributing to the identification of an estimated 1.5 million new nodules 

every year. Novel tools to distinguish benign from malignant nodules are urgently needed. We 

have previously demonstrated that volumetric CT-based quantitative characterization of lung 

nodules belonging to the adenocarcinoma spectrum is useful in risk-stratifying these lesions, 

exploiting the wealth of data points available with modern CT imaging. In this project, we are 

attempting to use similar quantitative imaging metrics to assist radiologists and clinicians in 

determining the likelihood of malignant nodule based on radiologic (radiologic model) and 

combined clinical and radiologic characteristics (clinical-radiologic model). To do so, we are 

using the available NLST dataset as a training set and have secured access to the large ongoing 

prospective study Detection of Early lung Cancer Among Military Personnel Study 1 

(DECAMP-1). This project, is successful, will help to limit morbidity, mortality and healthcare 

costs associated with the management of incidentally or screen-identified pulmonary nodules. 

2. KEYWORDS: 

lung adenocarcinoma – overdiagnosis – Lung cancer screening – chest computed tomography – 

biomarkers – lung nodules. 

3. ACCOMPLISHMENT: 

1. What were the major goals of the project? 

Aim 1 (first year of the grant): The first aim of this grant was to develop an imaging-based 

approach using volumetric analysis of screen-identified lung nodules, and a combined clinical-

radiologic model to differentiate benign from malignant nodules.  

a. Milestone: Development of optimized quantitative radiological variables predictive of the 

benign or malignant character of lung nodules from a cohort isolated from the NLST (12 

months – October 2016).  

Note that subcontracts with Brown University and Mayo Clinic (required due to relocation of the PI, 

Fabien Maldonado, to Vanderbilt University) were not established until March 2016 and as such work 

could not be started before that time. 

The identification of optimized quantitative radiological variables is 90% complete (see section 2). 
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b. Milestone: development of a radiologic prediction model (12 months)  

The radiologic model is contingent upon all optimized quantitative radiological variables being finalized 

and has not been started yet. 

c. Development of a combined clinical/radiologic prediction model (12 months).  

The clinical/radiologic model is contingent upon all optimized quantitative radiological variables being 

finalized and has not been started yet. Clinical variables are available from the NLST database (see 

below) 

Aim 2 (second year of the grant): the second aim of this grant is to prospectively validate the models 

developed in Aim 1 in the DECAMP-1 dataset (500 patients with indeterminate pulmonary nodules, 

DECAMP PROTOCOL ACRIN 4703).  

Milestone: Validation of a radiologic and combined clinical/radiologic prediction models (Year 2 of the 

grant).  

This work has not been started yet. 

2. What was accomplished under these goals: 

Major activities: 

2.1 NLST Case selection and image transfer: 

NLST Subject Selection 

Four groups of participants were selected from the pool of eligible participants, who did not withdraw 

from follow-up, in the CT arm of the NLST (N=26,262). 

The four groups are (1) screen-detected Lung cancer cases of the type adenocarcinoma and BAC, (2) non-

lung cancer controls, (3) screen-detected lung cancer controls which includes squamous cell carcinomas, 

large cell carcinomas, small cell carcinomas and carcinoids and (4) an additional set of non-lung cancer 

controls where the nodule size was larger than 7mm.  Groups (1) and (2) were selected initially and 

groups (3) and (4) were selected subsequently. 

(1) All screen-detected lung cancer cases of the type adenocarcinoma and BAC identified in 

the pool defined above were identified (N=342; 40% ACRIN, 60% LSS). 

(2) Non-lung cancer controls were selected as a stratified random sample from all 

participants in the pool defined above who were not found to have lung cancer during the 

screen or follow-up periods of the NLST and additionally only had one type of nodule 

identified on the CT image where a nodule was first identified.  Participants were then 

stratified based on study arm and nodule type to create 6 strata; the two study groups by 

the three nodule types (solid, ground glass and part-solid).  770 non-lung cancer controls 

were to be selected is based on a 2:1 ratio with the lung cancer cases, with a 10% attrition 

rate for images not available.  We stratified by study based on the percent of cases 

identified and by nodule based on an even split within each study.  LSS for each nodule 
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type was 154, ACRIN for each nodule type was 103 resulting 771 non-lung cancer 

controls total identified.  For each stratum a simple random sample based on the 

univariate distribution was used to select the controls. 

(3) All screen-detected lung cancer cases of the type squamous cell carcinomas, large cell 

carcinomas, small cell carcinomas and carcinoids were identified in the pool defined 

above (N=218; 37% ACRIN, 63% LSS). 

(4) An additional 40 non-lung cancer controls were selected as a stratified random sample 

from all participants in the pool defined above who were not originally selected in group 

2 and using the same criteria as group 2, resulting in 16 ACRIN and 32 LSS participants.  

Note of the original group 2 (only 362 are within the limits of 7 – 30 mm in size for the 

nodules). 

 
After all cases and non-LC controls were identified for groups 1 and 2 (N=1113).  Case lists were 

prepared and sent to the LSS and ACRIN core labs to identify images to send.  The core labs informed us 

that 10 images were unavailable resulting in 1103 cases available for groups 1 and 2.  These 1103 were 

stratified by case status (case versus control) and for the controls by nodule type and randomly split into 

two data sets, training and validation. 

A case list for LC-controls were prepared and sent to the core labs (N=218). The core labs informed us 

that 5 images were unavailable resulting 213 cases available for group 3.  These 213 were randomly split 

into two data sets, training and validation. 

A case list for the additional non-LC controls (N=40) was prepared and sent to the LSS core lab to 

identify images to send.  All 40 had available images. 

Image transfer 

1. From LSS Core Lab 

After receiving the list of participant identification numbers for the desired population of 

CT images, LSS Core Lab transmitted the list to the NLST data managers for linking to 

image identifiers. The image identifiers were then transmitted to the Cancer Imaging 

Archive (TCIA).   

 

After the image verification, the investigators were required to ship a hard drive to 

TCIA.  Staff at TCIA copied the selected CT images to the hard drive.  The drive was 

then shipped back to the investigators. 

 

2. From ACRIN Imaging Core Lab 

Three processes were used at the ACRIN Core Lab to deliver the required images to the 

investigators.   

A) On their initial request, the investigators were given a secure hard drive that contained 

images that they requested to begin their analysis right away. 

B) After the investigators had TRIAD set up on their system, the subsequent imaging 

data was made available to the investigators on a folder that only each individual can 

access. 

C) For small amount of image data, an SFTP account was created to deliver the images 

to the investigators. 

D)  
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2.2 Development and optimization of quantitative radiological variables: 

The following tasks were accomplished towards the identification and optimization of 

quantitative  radiological variables to enable the differentiation of benign and malignant lung 

nodules : 

2.2.1 Optimization and validation of nodule segmentation. For the feasibility pilot study, the 

lung nodules were segmented manually using ANALYZE software (Biomedical Imaging 

Resource, Mayo Clinic, Rochester, MN). The location and the extent of each nodule was 

identified visually and a stack of two dimensional borders were traced out along the transverse 

orientation. Tracing errors were minimized by guiding the manual traces along the automatically 

detected edges. Apart from being intensive and subjective, the manual approach suffers from 

out-of-plane discontinuities arising due to section-by-section two dimensional delineation of a 

three dimensional object. Towards optimizing the nodule segmentation, we developed a semi-

automatic region growing approach based on the operator specified bounding cube enclosing the 

nodule and a seed location within the nodule. Manual editing tools were added to remove, if 

needed, intruding structures like vessels and pleura. Region growing approaches traditionally use 

the underlying voxel intensities to identify and agglomerate regions similar to the intensity at the 

seed location. Such an approach is highly sensitive to placement of the seed and the inherent 

noise in the scan. We developed a “parametric” feature-based region growing technique based on 

the texture classification of the voxels within the operator specified bounding cube. The texture 

classification is based on CALIPER software (Mayo Clinic, Rochester, MN). The detection and 

quantification of pulmonary parenchyma on CT scans by CALIPER (Computer Aided Lung 

Informatics for Pathology Evaluation and Rating) is based on histogram signature mapping 

techniques trained through expert radiologist consensus assessment of pathologically confirmed 

training sets. Using CALIPER, we analyzed the signatures of a multitude of manually segmented 

nodules derived from the Mayo training, discovery and NLST lung cancer cohort (Figure 1). 

Through this exercise, the candidate texture features for the parametric region growing were 

identified. 

 

 

 

 

 

 

 

Figure 1. Analysis of 

the CALIPER texture 

features within the 

lung nodules.  The  

texture features 

within the shaded 

region do not appear 

within the lung 

nodules. 
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Towards validating the reproducibility and repeatability of the proposed segmentation, three 

operators (experienced radiologist, pulmonologist and image analyst) segmented multiple 

nodules (N = 266) from the NLST Controls cohort. The segmentation masks generated by the 

operators were compared pairwise using Dice Similarity Coefficient ( DSC; Figure 2). The 95% 

CI for the DSC between radiologist-pulmonologist, radiologist-image analyst and pulmonologist-

image analyst was respectively 0.792-0.772, 0.785-0.804 and 0.835-0.857.  

 

 

 

 

 

 

 

 

 

2.2.2 Nodule Surface characterization. Nodule shape descriptors  such as sphericity, flatness, 

elongation, spiculation and lobulation are accepted predictors of malignant nodules. We have 

developed quantitative methods to characterize these features in an automated and reproducible 

fashion. In addition to these common-place descriptors we also investigated, through a pilot 

feasibility study, the applicability of unbiased curvature-based shape descriptors. In this 

approach, the nodule surfaces are meshed, cleaned and smoothed; mean and Gaussian curvatures 

are computed at the mesh vertices. Based on the vertex-wise signs of the mean and Gaussian 

curvatures, the vertices are classified into surface features as peak, ridge, saddle ridge, flat, 

minimal, pit, valley and saddle valley. We showed in our pilot study that unsupervised 

stratification based on cumulative distribution of these surface features distinguishes benign and 

malignant nodules. For the pilot study with 90 nodules, we used a disparate set of applications to 

address the different components of surface characterization (Table 1). This error prone approach 

took about thirty minutes to process a single nodule. With multiple iterations of this process 

required during the exploratory stages, it is impractical to process the 657 nodules planned for 

developing the radiologic model. Therefore we designed, implemented and integrated all the 

components into a single monolithic software. Due to this significant development effort, the 

processing time per nodule (excluding the nodule segmentation time) has dramatically reduced to 

under a second. 

Figure 2. Three dimensional scatter 

plot showing the pairwise Dice 

Similarity Coefficient (DSC) between 

the nodules segmented by the 

Radiologist (Rx), Pulmonologist (Px) 

and Image Analyst (IA). 
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Table 1. Algorithmic components of nodule surface characterization and the strategy used during the pilot 

study and current improvements.  

Tools used in Pilot Study Components Current Status 

ANALYZE Nodule Segmentation CANARY-PLUS 

ANALYZE AVW Surface Extraction 

In-house monolithic 

software 

ADMesh Surface Repair 

MATLAB Surface smoothing 

MeshLab Discrete Curvatures Estimation 

MATLAB Surface feature categorization 

CALIPER Unsupervised clustering 

~ 30 minutes Time to process one nodule < 1 second 

2.2.3 Development of Score Indicative of Lesion/Lung Aggression/Abnormality (SILA). 

Current literature suggests that no single quantitative metric exists to differentiate benign and 

malignant nodules. However, multivariate predictive models based on an ensemble of  nodule 

texture, surround texture, nodule surface and other shape descriptors could improve the 

discriminability. To facilitate the multivariate analysis we investigated the possibility of 

replacing our previously developed nodule texture and surface categorization using unsupervised 

stratification into continuous variables that can be thresholded at multiple levels to provide, if 

needed, the necessary categorization. We developed SILA to map the nine nominal 

texture/surface exemplar distributions of the nodule onto a continuous scale. The nine nominal 

exemplar distributions can be ordinated in 362,880 ( factorial 9) ways. To identify the unique 

ordination that correlates with the virulence/malignancy of the nodule, we used qualitative 

spatial reasoning and multi-dimensional scaling. Based on this, the nine texture exemplars 

arbitrarily labeled as V,I,B,G,Y,O,R,C, and P were ordinated as V-R-O-I-Y-P-B-G-C identical to 

that used to represent the distributions via the glyphs. The nine surface exemplars were ordinated 

as unknown-minimal surface-valley-flat-ridge-pit-saddle valley-saddle ridge-peak. SILA was 

computed as the Cramer-Von Mises Distance of the ordinated exemplar distributions. Using a 

similar strategy, the seven primal parenchymal exemplars (Normal, Ground Glass, 
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Honeycombing, Reticular, {mild, moderate, severe} lower attenuation areas) were ordinated to 

compute the SILA for  the parenchyma surrounding the nodule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mosaic showing the glyphs (A, D), the nodule distribution within the upper, middle, 

lower left and right lung (B, E) and the Score Indicative of Lesion Abnormality  (SILA) for the 

NLST malignant and benign nodules used in this study. The glyphs are ordered in Panels A and D  

based on the nodule-specific  SILA values ; the SILA values in Panels C and F are color coded in 

green, yellow and red based on the previously developed CANARY categorization. 
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Figure 4 shows the operator dependent variations in the SILA mappings for the texture and 

surface characterization. The 95% C.I for the maximum nodule-specific SILA differences across 

the 3 operators was 0.217 – 0.271 and 0.236 – 0.276 respectively for the texture and surface 

characterization. 

 

 

 

 

 

 

 

 

2.2.4 Quantitative metrics for the discrimination of benign and malignant lung nodules. A 

comprehensive number of automatically computable, quantitative metrics were identified for the 

discrimination of benign and malignant lung nodules (Table 2). These metrics are broadly 

categorized into  

1. Bulk  metrics based on the global shape descriptors of the nodule. 

2. Intensity metrics based on the CT Hounsfield units within the nodule. 

3. Metrics capturing the spatial location of the nodule. 

4. Nodule texture metrics based on the CANARY texture exemplar distributions within the 

nodule. 

5. Surround texture metrics based on the parenchymal texture exemplar distributions within 

a region surrounding the nodule. 

6. Metrics capturing the surface descriptors of the nodule. 

7. Metrics capturing the distribution of the surface exemplars of the nodule. 

The discriminability of benign and malignant nodules were analyzed using t-test and the normal 

distribution of the individual metric value was sassed using the quantile-quantile plot and the 

probability plot correlation coefficient (PPCC). In contradiction to the existing literature, our 

investigation revealed that skew and kurtosis of the voxel intensities within the nodule is not a 

discriminator of benign and malignant nodules. This could be attributed to the majority of 

current work focused on solid nodules.  

 

Figure 4. Three dimensional 

scatter plot showing the 

variations in the SILA (Score 

Indicative of Lung 

Abnormality) between the 

nodules segmented by 3 

operators. Panels A and B 

respectively show the SILA 

values for the nodule texture 

and surface.  The nodules (N = 

266) described in section 2.2.1 

were used for this analysis. 
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Table 2. List of quantitative metrics used in the discrimination of benign and malignant nodules. The 

pval, 95% CI and the probability plot correlation coefficient (PPCC) are given in the last column for 

benign (N = 319) and malignant (N = 338) nodules. 

Metric 

Category 
# Metric Description 

Pval  

95% CI for  Benign /Malignant  

PPCC for Benign/ Malignant 

 

 

 

 

 

 

 

 

 

 

 

Bulk 

 

 

 

 

 

 

 

 

 

 

 

 

1 Volume (V) 

 

Nodule volume in mm^3 

< 0.0001                                         

254  –  435 / 2521  –  5716 

0.57 / 0.45 

2 
Surface Area 

(S) 

Surface in mm^2. 

Contribution of each 

surface voxel is 

determined by the 

neighbors of that voxel. 

Additionally, the surfaces 

which intersect the edge 

of the volume are 

included in the 

measurements. 

< 0.0001                                         

289  –  399 / 2479  –  2299    

0.71 / 0.61 

3 
Sphericity 

(Sph) 
𝑆𝑝ℎ =  

6 ∗ √𝜋𝑉

𝑆3/2
 

< 0.0001                                        

0.57  –  0.63 / 0.48 – 0.53 

0.94 / 0.97 

4 
Sphere Fit 

Factor (SFF) 

𝑆𝐹𝐹 =  
𝑆3

𝜋(2𝑉/3)2
 

0.0008                                           

4.63  –  5.92 / 6.3 – 8.18 

0.82 / 0.77 

5 Radius (R) 

Maximum radius if it 

were to be spherical 

nodule . 𝑅 =  (
3𝑉

4𝜋
)

1/3
 

< 0.0001                                        

3.42 – 3.77 / 7.1 – 7.9 

0.88 / 0.89 

6 

Minimum 

Enclosing 

Brick(MEB) 

The x,y,z extents of the 

minimum enclosing brick 

around the nodule 

 

7 MEB Angle 

The orientation of the 

minimum enclosing brick 

around the nodule 
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Bulk contd. 

 

 

 

 

 

 

 

 

 

 

 

8 
Elongation 

(E) 

𝐸 = 1.0 −  
𝜀_𝑚𝑎𝑥

𝜀_𝑚𝑖𝑑
 

_max, _mid are the 

maximum and middle 

edge lengths of MEB 

0.45                                                     

-0.36  –  -0.26  / -0.34  –  -0.23 

0.72 / 0.7 

9 Flatness (F)  

𝐹 = 1.0 −  
𝜀_𝑚𝑖𝑑

𝜀_𝑚𝑖𝑛
 

_min, _mid are the 

minimum and middle 

edge lengths of MEB 
< 0.0001                                             

-1.12  –  -0.89 /  0.68  –  -0.46 

0.98 / 0.96 

Intensity  

10 Mean (Avg) 

average of the voxel 

intensities within the 

nodule 

< 0.0001                                              

-487  –  -443 /-233 – -195 

11 
Variance 

(Var) 

variance the voxel 

intensities within the 

nodule 

0.06 

- 

.66 / .35 

12 Skew (Skew) 

skewness of the voxel 

intensities within the 

nodule 

𝑆𝑘𝑒𝑤 =  

∑(𝑥𝑖 − 𝐴𝑣𝑔)3

𝑁
𝑉𝑎𝑟3/2

 

0.55                                                     
-25  –  -2.6 / -3.9  –  -1.6 

.95 / .42 

13 
Kurtosis 

(Kur) 

Kurtosis of the voxel 

intensities within the 

nodule 

𝐾𝑢𝑟 =  

∑(𝑥𝑖 − 𝐴𝑣𝑔)4

𝑁
𝑉𝑎𝑟2

 

0.24                                                
9.43 – 11.64 / -82.34 – 395.39 

.68 / .17 

14 Entropy (En) 

𝐸𝑛 =  −𝑥𝑖 ∗ 𝑙𝑜𝑔2(𝑥𝑖) < 0.0001                                        

6.57 – 6.96  / 7.47 – 7.88   

.68 / .69 
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Location 

15 
Location 

(Loc) 

The Left/Right (L/R), 

Upper/Middle/Lower 

(U/M/L), Peripheral / 

Central (P/C) region 

containing majority of the 

nodule voxels. The bar 

chart on the right shows 

the relative distribution of 

the benign (blue) and 

malignant (red) nodules 

across the 12 regions. 

PPCV: .97 / .96 

16 
Offset from 

Carina 

x,y,z- offsets of the 

nodule centroid to Carina 
 

17 
Offset from 

Hila 

x,y,z- offsets of the 

nodule centroid to Hila 
 

18 
Offset from 

Pleura 

x,y,z- offsets of the 

nodule centroid to Pleura 
 

Nodule 

Texture 

19 
Exemplar 

Distribution 

Distribution of the nine 

CANARY texture 

exemplars constituting the 

nodule 

 

20 SILA 

Score Indicative of Lesion 

Aggression for the nodule 

texture.  

< 0.0001                                                 

54.42 – 62.81 / 116.88 – 124.58 

0.98 / 0.97 

21 
Risk 

Category 

Risk Stratification group. 

The bar chart on the right 

shows the relative 

distribution of the risk 

groups for benign (green) 

and malignant (red) 

nodules. PPCV: .8 / .87 
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Nodule 

Surround 

Texture 

22 
Surround 

Distribution 

Distribution of the 7 

parenchymal exemplars 

(Normal, Honey comb, 

Reticular, Ground glass, 

mild low attenuation area 

(LAA , moderate LAA, 

severe LAA) within 10 

mm around the nodule. 

Bar chart on the right 

shows the average % 

distribution of non-normal 

exemplars for the benign 

(green) and red 

(malignant) nodules 
 

23 
Percentage 

Vessels 

Percentage of Vessels 

within a 10 mm region 

around the nodule 

< 0.0001                                               

0.61 – 0.89 / 1.41 – 1.77 

0.8 / 0.91 

24 
Percentage 

Background 

Percentage of non-lung 

voxels around the nodule 
0.928                                                      
8.35 – 10.81 / 8.65 – 10.68 

0.9 / 0.94 

25 SILA_Fib 

SILA score for the 

distribution of honey 

comb, reticular and 

ground glass surrounding 

the nodule. 

0.001                                                        

24.89 – 29.95 / 30.62 – 34.48 

0.96 / 0.99 

26 SILA_LAA 

SILA score for the 

distribution of mild, 

moderate and severe 

LAA. 

0.05                                                         

30.5 – 34.88 / 33.62 – 37.2 

0.98 / 0.99 

 

 

 

Nodule 

Surface 

 

 

 

 

27 
Number of 

Vertices NV 

Number of vertices in the 

surface 

< 0.0001                                                

438 – 592 / 2262 – 3373                       

0.72 / 0.63       

28 

Willmore 

Bending Ene-

rgy (WEB) 

Given the per-vertex 

principal curvatures k1 and 

k2, 𝑊𝐸𝐵 =  ∫ (𝑘1
2 +

𝐴

𝑘2
2 ) 𝑑𝐴 

< 0.0001                                                

401 – 560 / 1377 – 2279 

0.72 / 0.57 

29 H: Min 

 

 

< 0.0001                                                

-0.33– -0.23 / -1.05 – -0.90 

0.89 / 0.97 
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Nodule 

Surface 

contd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 H: Max 

 

 

 

 

 

Mean curvature (H) is an 

extrinsic curvature that 

arises from the 

mechanical folding of the 

surface. 

𝐻 =  
(𝑘1 + 𝑘2)

2
 

< 0.0001                                                

3.07 – 3.47 / 3.82 – 4.45 

0.84 / 0.87 

31 H: -ve Avg 

0.2                                                         
-0.14 – -0.12 / -0.15 – -0.13     

- / -                                         

32 H : +ve Avg 

< 0.0001                                                

0.56 – 0.60 / 0.35 – 0.37 

0.98 / 0.94 

33 H : -ve Skew 

< 0.0001                                                

-1.1 – -0.85 / -2.2 – -1.97 

- / -  

34 H: +ve Skew 

< 0.0001                                                 

1.88 – 2.14 / 2.97 – 3.44 

0.98 / 0.94 

35 G: Min 

 

 

 

 

 

 

 

 

Gaussian Curvature (G) 

𝐺 = 𝑘1 ∗ 𝑘2 

0.0005                                                                

-0.96 – -0.78 / -1.21 – -1.01 

0.86 / 0.88 

36 G: Max 

0.0004                                                   

10.27 – 14.93 / 17.41 – 26.62 

0.6 / 0.64 

37 G: -ve Avg 

0.30                                                              

-93 – 30.21 / -0.06 – -0.055 

0.16 / 0.86 

38 G: +ve Avg 

< 0.0001                                                

0.56 – 0.67 / 0.31 – 0.44 

0.84 / 0.61 

39 G: -ve Skew 

< 0.0001                                                 

-2.52 – -2.2 / -4.46 – -4.0 

- / -  

40 G: +ve Skew 

< 0.0001                                                 

4.43 – 4.9 / 7.41 – 8.21 

0.94 / 0.96 
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Nodule 

Surface 

contd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41 
Sharpness 

(S): Min 

 

 

 

 

 

Sharpness at a vertex 

emphasizes regions where 

k1 and k2 are maximally 

different as in the crests 

and depths. 

𝑆𝑖 =  (𝑘1
2 − 𝑘2

2) 

< 0.0001                                                

-0.8 – -0.64 / -1.6 – -1.4 

0.95 / 0.98 

42 S: Max 

< 0.0001                                                  

3.56 – 4.16 / 5.12 – 5.96 

0.85 / 0.91 

43 S: Avg 

< 0.0001                                                 

0.65 – 0.70 / 0.39 – 0.42 

0.98 / 0.97 

44 S: Skew 

< 0.0001                                                     

1.1 – 1.34 / 1.65 – 2.01 

0.94 / 0.91 

45 
Curvedness 

(C): Min 

 

 

 

 

Curvedness captures 

information on less sharp 

folding thus revealing 

smaller bumps and ridges. 

𝐶 =  √(
𝑘1

2 + 𝑘2
2

2
) 

< 0.0001                                                             

0.03 – 0.04 / 0.003 – 0.005 

0.88 / 0.87 

46 C: Max 

< 0.0001                                                           

2.35 – 2.68 / 3.10 3.63 

0.83 / 0.89 

47 C: Avg 

< 0.0001                                                 

0.47 – 0.51 / 0.30 – 0.32 

0.98 / 0.94 

48 C: Skew 

< 0.0001                                                             

1.71 – 1.99 / 2.94 – 3.46 

0.90 / 0.87 

49 
Shape Index 

(SI): Min 

 

 

 

 

𝑆𝐼 =  
2

𝜋
 tan−1 (

𝑘1 + 𝑘2

𝑘2 − 𝑘1
) 

< 0.0001                                                                    

-0.62 – -0.48 / -0.1 – -0.96 

0.81 / 0.33 

50 SI: Max 

< 0.0001                                                             

0.975 – 0.978 / 0.982 – 0.984 

0.91 / 0.94 

51 SI: Avg 

< 0.0001                                                

0.54 – 0.56 / 0.28 – 0.31 

0.97 / 0.99 
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Nodule 

Surface 

contd. 

 

 

 

 

52 SI: Skew 
0.5                                                           

-1.87 – -1.56 / -1.75 – -1.56 

53 

Intrinsic 

Curvature 

Index (ICI) 

ICI counts the number of 

regions with undulations 

or saliencies on the 

surface. 

𝐼𝐶𝐼

=  
1

4𝜋
 ∬|𝑘𝑚𝑖𝑛 𝑘𝑚𝑎𝑥| 𝑑𝐴 

where 

𝑘𝑚𝑖𝑛 =  𝐻 −  √𝐻2 − 𝐺 

𝑘𝑚𝑎𝑥 =  𝐻 + √𝐻2 − 𝐺 

< 0.001                                                                 

13.33 – 18.08 / 34.94 – 64.15 

0.72 / 0.81 

54 

Extrinsic 

Curvature 

Index (ECI) 

ECI counts the number 

and length (with respect to 

the diameter) cracks and 

gaps on the surface. 

𝐸𝐶𝐼

=  
1

4𝜋
 ∬|𝑘𝑚𝑧𝑥| (|𝑘𝑚𝑎𝑥|

−  |𝑘𝑚𝑖𝑛|) 𝑑𝐴 

 

< 0.0001                                                         

33.13 – 45.7 / 100.2 – 167.8 

0.71 / 0.82 

 

 

 

Morpheme 

 

 

55 
Morpheme 

Distribution 

The distribution of the 

nine morphometric 

exemplars of the nodule 

surface. The plot on the 

right shows the average 

cumulative distribution 

between the benign 

(green) and malignant 

(red) nodules.  
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Morpheme 

contd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56 
SILA 

Morpheme 

 

Score Indicative of Lesion 

Abnormality based on the 

morpheme distribution. 

The plot on the right 

shows the distribution of 

SILA morpheme for 

benign and malignant 

nodules 

< 0.0001                                                

1.81 – 1.94 / 2.55 – 2.66  

0.95 / 0.99 

57 

Morpheme 

Curvedness 

(MC): Avg 

 

 

 

 

Morpheme-wise average 

curvedness of the surface. 

The table to the right 

shows the pvals and 95% 

CI for the benign and 

malignant nodules. Sig = 

Significant ( < 0.0001); 

NS = not significant  

Id p 95% CI 

1 Sig 0.52 – 0.56/ 0.39 – 0.41 

2 NS 0.007– 0.03/0.008– 0.17 

3 Sig 0.4 – 0.44 / 0.26 – 0.28 

4 -  

5 -  

6 -  

7 NS 0.21 – 0.26 / 0.2 – 0.23 

8 NS 0.01 – 0.04 / 0.01 – 0.02 

9 Sig 0.2 – 0.23 / 0.15 – 0.16 
 

58 MC: Skew 

 

 

 

 

Morpheme-wise skew of 

curvedness of the surface. 

The table to the right 

shows the pvals and 95% 

CI for the benign and 

malignant nodules 

Id p 95% CI 

1 Sig 1.51 – 1.73 / 2.38 – 2.76 

2 0.02 2.6 – 3.8 / 3.75 – 4.59 

3 Sig 1.04 – 1.31 / 2.15 – 2.54 

4 -  

5 0.32 0.46 – 2.33 / 1.45 – 8.7 

6 -  

7 Sig 0.33 – 0.57 / 1.21 – 1.41 

8 0.07 0.21 – 1.7 / 1.6 – 2.4 

9 Sig 0.49 – 0.71 / 1.32 – 1.52 
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Morpheme 

contd. 

 

59 
Local SILA : 

Avg 

Local morpheme SILA 

was computed by finding 

2-ring neighbors around 

each vertex. The figure 

below shows the color 

coded 9-ring neighbor 

around  a sample vertex 

for a representative 

nodule. 

The average and skew of 

the local SILA 

distribution was 

computed. 

< 0.0001                                                           

14.38 – 16.32 / 26.74 – 28.64 

0.95 / 0.99 

60 
Local SILA: 

Skew 

< 0.0001                                                

0.41 – 0.56 / 0.66 – 0.75 

0.99 / 0.99 

61 
Local SILA: 

Histogram 

 

Figure to the right shows 

the average cumulative 

distribution of the local 

morpheme SILA for the 

benign and malignant 

nodules 

 

 

2.2.5 Decision tree based approach for the discrimination of benign and malignant lung 

nodules. During the investigation, we observed that a number of benign nodules in the NLST 

cohort were flat and much smaller than 7 mm in diameter. On the contrary, all the malignant 

nodules were above 7 mm. To prevent contamination of the radiologic model by these tiny 

nodules we used a decision tree based approach (Figure 5) to facilitate the robust discrimination 

of benign and malignant nodules. Size filter was based on the maximal extent of the minimum 

enclosing brick edge lengths. Flatness check was based on the number of transverse sections 

covering the nodule. Using these criteria, 128 of the 319 benign nodules were eliminated  from 

the subsequent radiologic modeling; none of the 338 malignant nodules met the criteria and were 

all used in the modeling. Candidate metrics for the radiologic model was selected using the ROC 

analysis of the individual metrics. Metrics with AUC values above 0.75 (shown highlighted in 
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Table 3) were selected as candidates for the radiologic modeling which is currently being 

pursued. Models based on Linear/Quadratic discriminant analysis, multinomial logistic 

regression and support vector machines are being investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. ROC analysis of the nodule metrics to identify the potential candidates of the radiologic 

modeling. Using an arbitrary cut-off of 0.75 for AUC, 14 metrics (highlighted in the table) were selected 

as candidate metrics. 

# Metric AUC SE 95% CI 

1 Volume 0.84 0.0181 0.804 to 0.875 

2 Surface Area 0.803 0.0197 0.764 to 0.841 

3 Sphericity 0.569 0.0255 0.519 to 0.619 

4 Sphere Fit Factor 0.569 0.0255 0.519 to 0.619 

5 Estimated Radius 0.840 0.0181 0.804 to 0.875 

6 Elongation 0.570 0.0255 0.520 to 0.620 

7 Flatness 0.635 0.0255 0.585 to 0.685 

8 HU_mean 0.810 0.0193 0.77 to 0.848 

9 HU_variance 0.544 0.0258 0.493 to 0.594 

10 HU_skew 0.539 0.0249 0.490 to 0.587 

Figure 5. Decision tree based radiologic modeling to minimize 

contamination due to small and flat benign nodules. 
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11 HU_kurtosis 0.709 0.0226 0.664 to 0.753 

12 HU_entropy 0.705 0.0231 0.659 to 0.750 

13  Location 0.570 0.0257 0.519 to 0.620 

14 SILA Texture 0.838 0.0186 0.802 to 0.875 

15 Texture Risk 0.762 0.0221 0.719 to 0.805 

16 Vessels % 0.677 0.0251 0.628 to 0.726 

17 Background % 0.543 0.0272 0.489 to 0.596 

18 SILA_ Fibrosis 0.588 0.0277 0.534 to 0.642 

19 SILA_LAA 0.568 0.0274 0.514 to 0.621 

20 Number of Vertices 0.815 0.0189 0.778 to 0.852 

21 Willmore Bending energy 0.699 0.0232 0654 to 0.745 

22 Min Mean Curvature 0.735 0.0223 0.691 to 0.745 

23 Max Mean Curvature 0.551 0.0254 0.501 to 0.6 

24 Avg –ve Mean Curvature 0.509 0.0276 0.455 to 0.563 

25 Avg +ve Mean Curvature 0.775 0.0218 0.732 to 0.818 

26 Skew +ve Mean Curvature 0.652 0.0242 0.604 to 0.6999 

27 Min Gaussian Curvature 0.585 0.0265 0.533 to 0.637 

28 Max Gaussian Curvature 0.544 0.0256 0.494 to 0.594 

29 Avg –ve Gaussian Curvature 0.722 0.0248 0.673 to 0.770 

30 Skew –ve Gaussian Curvature 0.740 0.023 0.695 to 0.785 

31 Avg +ve Gaussian Curvature 0.674 0.0246 0.626 to 0.722 

32 Skew +ve Gaussian Curvature 0.728 0.0222 0.685 to 0.772 

33 Min Sharpness 0.656 0.0245 0.608 to 0.704 

34 Max Sharpness 0.603 0.0253 0.553 to 0.652 

35 Avg Sharpness 0.796 0.0201 0.756 to 0.835 

36 Skew Sharpness 0.585 0.0259 0.535 to 0.636 

37 Min Curvedness 0.753 0.0233 0.707 to 0.799 

38 Max Curvedness 0.564 0.0253 0.514 to 0.613 

39 Avg. Curvedness 0.780 0.0216 0.738 to 0.822 

40 Skew Curvedness 0.654 0.0242 0.607 to 0.702 

41 Min Shape Index 0.735 0.0223 0.691 to 0.778 

42 Max Shape Index 0.621 0.0252 0.571 to 0.670 

43 Avg Shape Index 0.807 0.0189 0.770 to 0.844 

44 Skew Shape Index 0.724 0.0236 0.677 to 0.770 

45 ICI 0.637 0.0245 0.589 to 0.686 

46 ECI 0.685 0.0236 0.639 to 0.732 

47 SILA Texture 0.775 0.0222 0.731 to 0.818 

48 Avg Curvature T1 0.704 0.0235 0.657 to 0.750 

49 Avg_Curvature_T3 0.772 0.0214 0.730 to 0.814 

50 Avg_Curvature_T9 0.586 0.0295 0.529 to 0.644 

51 Skew Curvature_T1 0.642 0.0246 0.594 to 0.726 

52 Avg Local SILA 0.776 0.0218 0.733 to 0.819 

53 Skew Local SILA 0.510 0.0273 0.457 to 0.564 
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2.3 Development of a radiologic and clinical/radiologic prediction model: 

Due to delays in establishing subcontracts with Mayo Clinic and Brown University, this sub aim has not 

been started yet. 

2.4 Validation of a radiologic and clinical/radiologic prediction model: 

This aim is scheduled to start in the 2
nd

 year of the grant. 

3. What opportunities for training and professional development has the project provided? 

Nothing to report 

4. How were the results disseminated to communities of interest? 

Nothing to report 

5. What do you plan to do during the next reporting period to accomplish these goals? 

The development and optimization of different quantitative radiological variables has just been  

completed. The most promising variables as determined by receiver operative characteristics (ROC) curve 

analysis have been identified and will be combined by using multivariate logistic regression analysis, 

linear/quadratic discriminant analysis, support vector machines into a radiologic predictive model. The 

performance of this radiologic predictive model will be assessed by ROC curve analysis. We anticipate 

being able to generate this model by December 2016. Clinical and epidemiologic variables known to be 

predictive of malignancy (such as smoking status, age, know emphysema, etc…) available from the 

NLST database will then be combined with the radiologic variables to derive a combined 

radiologic/clinical predictive model using multivariate logistic regression. The performance of this model 

will be assessed using ROC curve analysis. We anticipate this combined model to be developed before 

the end of the calendar year 2016. 

Year 2 of the grant will be dedicated to validating these two models using the DECAMP-1 dataset. 

 

3. IMPACT 

 

1. What was the impact on the development of the principal discipline(s) of the project? 

An estimated 1.5 million new lung nodules are identified via chest CT annually in the US. This 

is likely to increase with the implementation of lung cancer screening for high-risk individuals. 

An estimated 10 million individuals in the US are eligible for screening. A significant proportion 

of these individuals are US veterans, disproportionately affected by tobacco use and other 

exposures. Results from the NLST suggest that annual screening via low-dose CT results in a 

20% relative reduction in lung cancer mortality. However, the large number of false positive 

screening CTs, 27% in the NLST, are likely to lead to unnecessary invasive diagnostic 
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interventions and treatments exposing screened individuals to excessive morbidity, mortality, 

stress and healthcare expenses. 

Currently lung nodules are evaluated by radiologists and the probability of malignancy based on 

subjective interpretations relying on features known to be predictive of lung cancer (such as size 

and shape of the nodule). With modern CT machines however, a considerable amount of data is 

available and are not currently exploited. Each nodule is composed of a considerable amount of 

voxels (similar to pixels, but in 3 dimensions) with variable density values. We have shown in 

our prior work that these data could be used to non-invasively risk-stratify nodules of the main 

subgroup of lung cancer: lung adenocarcinoma. In this project, we are using similar quantitative 

analytics to provide radiologists with objective non-invasive assessment of the likelihood for a 

nodule to be benign or malignant. Our data are very encouraging and suggest that this may be an 

attainable goal. If confirmed and validated on an independent cohort of indeterminate lung 

nodules, as we are planning to do in year 2 of this grant, this novel technology could 

revolutionize lung nodule management and mitigate the risks inherent in indiscriminate 

implementation of mass lung cancer screening. 

2. What was the impact on other disciplines? 

Nothing to report 

3. What was the impact on technology transfer? 

Nothing to report 

4. What was the impact on society beyond science and technology? 

If successful, our project could lead to a widely available platform available to clinicians and 

radiologists that could facilitate the management of screen- or incidentally identified lung 

nodules, a major healthcare issue for Veteran and non-Veteran populations at risk. Quantitative 

nodule analysis can be applied to existing CT scans obtained for screening or clinical indications 

and do not require additional testing beyond application of image analytics. Our quantitative 

analytics tool could help standardize the management of lung nodules and lead to a substantial 

reduction in the unnecessary morbidity, mortality and healthcare costs associated with the 

current paradigm. 

5. CHANGES/PROBLEMS 

1. Changes in approach and reasons for change: 

Our preliminary data presented in the narrative in the project narrative of the grant suggested that 

quantitative nodule characteristics that could provide valuable information on the benign or 

malignant character of a nodule would belong to one of the 6 following categories: density-based 

signatures, characteristics of the tumor-free surrounding lung, nodule morphometrics (i.e. nodule 

surface analysis), and nodule volume, location and counts. 
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Nodule location and counts can easily be ascertained without recourse to sophisticated 

quantitative analytical algorithms and immediately available from the radiology report of the CT 

scan, Hence, it was decided to include these variables as part of the clinical and epidemiological 

variables that will be combined with radiological quantitative variables as part of the combined 

radiologic/clinical predictive model. 

2. Actual or anticipated problems or delays and actions or plans to resolve them: 

While the award was effective on September 30, 2015, because of relocation of the grant PI from 

Mayo Clinic, Rochester, MN to Vanderbilt University, Nashville, TN, subcontracts had to be 

established between the three partnering institutions (Mayo Clinic, Brown University and 

Vanderbilt University) and were only finalized in April 2016. This resulted in a significant delay 

for case selection and image transfer from the ACRIN and LSS core labs and our work on the 

development and optimization of discriminative radiological quantitative variables. While this 

initial step has nearly been completed, the integration of the variables into multivariate radiologic 

and combined clinical/radiologic predictive models was accordingly delayed. We anticipate 

being able to derive these models before the end of the calendar year 2016. In parallel, we 

initiated the process of image transfer from the DECAMP1 dataset and started preparing the 

database in a blinded fashion for future analysis by our predictive models. We therefore 

anticipate being able to complete our project within the timeframe allowed by the grant. 

3. Changes that had a significant impact on expenditures 

Nothing to report. 

4. Significant changes in use or care of human subjects, vertebrate animals, biohazards, 

ad/or select agents 

Nothing to report 

6. PRODUCTS 

1. Publications, conference papers, and presentations 

Nothing to report 

2. Website(s) or other internet site(s) 

Nothing to report 

3. Technologies or techniques 

Novel CT-based quantitative analytics to distinguish benign from malignant nodules. How this 

novel analytical tools will be shared has not yet been determined. 

4. Inventions, patent applications and/or licenses 
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Nothing to report 

5. Other products 

Nothing to report 
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